R binding for NNG (Nanomsg Next Gen), a successor to ZeroMQ. NNG is a socket library implementing ‘Scalability Protocols’, a reliable, high-performance standard for common communications patterns including publish/subscribe, request/reply and service discovery, over in-process, IPC, TCP, WebSocket and secure TLS transports.

As its own threaded concurrency framework, provides a toolkit for asynchronous programming and distributed computing, with intuitive ‘aio’ objects which resolve automatically upon completion of asynchronous operations, and synchronisation primitives allowing R to wait upon events signalled by concurrent threads.

Designed for performance and reliability, nanonext is a lightweight wrapper around the NNG C library, and is itself implemented almost entirely in C.

Provides the interface for code and processes to communicate with each other - receive data generated in Python, perform analysis in R, and send results to a C++ program – on the same computer or across networks spanning the globe.

Implemented scalability protocols:

Supported transports:

  • inproc (intra-process)
  • IPC (inter-process)
  • TCP (IPv4 or IPv6)
  • WebSocket
  • TLS (over TCP and WebSocket)

Development of the TLS implementation was generously supported by the R Consortium .

Web utilities:


Install the latest released version:

# Either [1] fast channel from R-multiverse:
install.packages("nanonext", repos = "https://r-multiverse.r-universe.dev")
# Or [2] slow channel from CRAN:

Or development build from R-universe:

install.packages("nanonext", repos = "https://shikokuchuo.r-universe.dev")

Quick Start

nanonext offers 2 equivalent interfaces: a functional interface, and an object-oriented interface.

Functional Interface

The primary object in the functional interface is the Socket. Use socket() to create a socket and dial or listen at an address. The socket is then passed as the first argument of subsequent actions such as send() or recv().

Example using Request/Reply (REQ/REP) protocol with inproc transport:
(The inproc transport uses zero-copy where possible for a much faster solution than alternatives)

Create sockets:


socket1 <- socket("req", listen = "inproc://nanonext")
socket2 <- socket("rep", dial = "inproc://nanonext")

Send message from ‘socket1’:

send(socket1, "hello world!")
#> [1] 0

Receive message using ‘socket2’:

#> [1] "hello world!"

Object-oriented Interface

The primary object in the object-oriented interface is the nano object. Use nano() to create a nano object which encapsulates a Socket and Dialer/Listener. Methods such as $send() or $recv() can then be accessed directly from the object.

Example using Pipeline (Push/Pull) protocol with TCP/IP transport:

Create nano objects:


nano1 <- nano("push", listen = "tcp://")
nano2 <- nano("pull", dial = "tcp://")

Send message from ‘nano1’:

nano1$send("hello world!")
#> [1] 0

Receive message using ‘nano2’:

#> [1] "hello world!"


Please refer to the nanonext vignette for full package functionality.

This may be accessed within R by:

vignette("nanonext", package = "nanonext")

Building from Source

Linux / Mac / Solaris

Installation from source requires ‘libnng’ >= v1.6.0 and ‘libmbedtls’ >= 2.5.0 (suitable installations are automatically detected), or else ‘cmake’ to compile ‘libnng’ v1.8.0 and ‘libmbedtls’ v3.6.0 LTS included within the package sources.

It is recommended for optimal performance and stability to let the package automatically compile bundled versions of ‘libmbedtls’ and ‘libnng’ during installation. To ensure the libraries are compiled from source even if system installations are present, set the NANONEXT_LIBS environment variable prior to installation e.g. by Sys.setenv(NANONEXT_LIBS = 1).

As system libraries, ‘libnng’ is available as libnng-dev (deb) or nng-devel (rpm), and ‘libmbedtls’ as libmbedtls-dev (deb) or libmbedtls-devel (rpm). The INCLUDE_DIR and LIB_DIR environment variables may be set prior to package installation to specify a custom location for ‘libmbedtls’ or ‘libnng’ other than the standard filesystem locations.

Additional requirements for Solaris: (i) the ‘xz’ package - available on OpenCSW, and (ii) a more recent version of ‘cmake’ than available on OpenCSW - refer to the ‘cmake’ website for the latest source file.


For R >= 4.2 using the ‘Rtools42’ or ‘Rtools43’ toolchains, ‘libnng’ v1.8.0 and ‘libmbedtls’ v3.6.0 LTS will be automatically compiled from the package sources during installation.

For previous R versions, pre-compiled ‘libnng’ v1.8.0 and ‘libmbedtls’ v3.6.0 LTS libraries are downloaded and used for installation instead.

We would like to acknowledge in particular:

  • Garrett D’Amore, author of the NNG library, for generous advice and for implementing a feature request specifically for a more efficient ‘aio’ implementation in nanonext.
  • The R Consortium for funding the development of the secure TLS capabilities in the package, and Henrik Bengtsson and Will Landau’s roles in making this possible.
  • Joe Cheng for prototyping the integration of nanonext with later to support the next generation of completely event-driven promises in mirai.
  • R Core for various auxiliary functions for serialisation and raw / character conversion, which have been adopted by the package.
  • Luke Tierney and Mike Cheng for meticulous documentation of the R serialization mechanism, which led to the package’s own implementation of a low-level interface to R serialization.
  • Jeroen Ooms - for his ‘Anticonf (tm)’ configure script, on which our original ‘configure’ was based, although much modified since.


◈ nanonext R package: https://shikokuchuo.net/nanonext/

nanonext is listed in CRAN Task Views:
- High Performance Computing: https://cran.r-project.org/view=HighPerformanceComputing
- Web Technologies: https://cran.r-project.org/view=WebTechnologies

NNG: https://nng.nanomsg.org/
Mbed TLS: https://www.trustedfirmware.org/projects/mbed-tls/

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.