Parallel Integration
mirai
provides an alternative communications backend for
R. This functionality was developed to fulfil a request by R Core at R
Project Sprint 2023.
make_cluster()
creates a cluster object of class
‘miraiCluster’, which is fully-compatible with parallel
cluster types.
- Specify ‘n’ to launch nodes on the local machine.
- Specify ‘url’ for receiving connections from remote nodes.
- Optionally, specify ‘remote’ to launch remote daemons using a remote
configuration generated by
remote_config()
orssh_config()
.
Created clusters may be used for any function in the
parallel
base package such as
parallel::clusterApply()
or
parallel::parLapply()
, or the load-balanced versions such
as parallel::parLapplyLB()
.
library(mirai)
cl <- make_cluster(4)
cl
#> < miraiCluster | ID: `0` nodes: 4 active: TRUE >
parallel::parLapply(cl, iris, mean)
#> $Sepal.Length
#> [1] 5.843333
#>
#> $Sepal.Width
#> [1] 3.057333
#>
#> $Petal.Length
#> [1] 3.758
#>
#> $Petal.Width
#> [1] 1.199333
#>
#> $Species
#> [1] NA
status()
may be called on a ’miraiCluster` to query the
number of connected nodes at any time.
status(cl)
#> $connections
#> [1] 4
#>
#> $daemons
#> [1] "abstract://4fc130b92777dbce706aaaa8"
stop_cluster(cl)
Making a cluster specifying ‘url’ without ‘remote’ causes the shell commands for manual deployment of nodes to be printed to the console.
cl <- make_cluster(n = 2, url = host_url())
#> Shell commands for deployment on nodes:
#>
#> [1]
#> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,987529368,-709709383,-455625178,-350041489,-644694556,1812636565))'
#>
#> [2]
#> Rscript -e 'mirai::daemon("tcp://hostname:38547",rs=c(10407,2025237564,31519412,1895592412,1818446374,-452272375,1687922752))'
stop_cluster(cl)
Foreach Integration
A ‘miraiCluster’ may also be registered by doParallel
for use with the foreach
package.
Running some parallel examples for the foreach()
function:
library(foreach)
library(iterators)
cl <- make_cluster(4)
doParallel::registerDoParallel(cl)
# normalize the rows of a matrix
m <- matrix(rnorm(9), 3, 3)
foreach(i = 1:nrow(m), .combine = rbind) %dopar%
(m[i, ] / mean(m[i, ]))
#> [,1] [,2] [,3]
#> result.1 0.5860066 1.0688031 1.3451903
#> result.2 0.6856291 -0.1415699 2.4559407
#> result.3 0.8224936 1.6700118 0.5074946
# simple parallel matrix multiply
a <- matrix(1:16, 4, 4)
b <- t(a)
foreach(b = iter(b, by='col'), .combine = cbind) %dopar%
(a %*% b)
#> [,1] [,2] [,3] [,4]
#> [1,] 276 304 332 360
#> [2,] 304 336 368 400
#> [3,] 332 368 404 440
#> [4,] 360 400 440 480